A dynamic programming algorithm for binning microbial community profiles
نویسندگان
چکیده
منابع مشابه
A dynamic programming algorithm for binning microbial community profiles
MOTIVATION A number of community profiling approaches have been widely used to study the microbial community composition and its variations in environmental ecology. Automated Ribosomal Intergenic Spacer Analysis (ARISA) is one such technique. ARISA has been used to study microbial communities using 16S-23S rRNA intergenic spacer length heterogeneity at different times and places. Owing to erro...
متن کاملA dynamic programming approach for solving nonlinear knapsack problems
Nonlinear Knapsack Problems (NKP) are the alternative formulation for the multiple-choice knapsack problems. A powerful approach for solving NKP is dynamic programming which may obtain the global op-timal solution even in the case of discrete solution space for these problems. Despite the power of this solu-tion approach, it computationally performs very slowly when the solution space of the pr...
متن کاملA path-following infeasible interior-point algorithm for semidefinite programming
We present a new algorithm obtained by changing the search directions in the algorithm given in [8]. This algorithm is based on a new technique for finding the search direction and the strategy of the central path. At each iteration, we use only the full Nesterov-Todd (NT)step. Moreover, we obtain the currently best known iteration bound for the infeasible interior-point algorithms with full NT...
متن کاملDynamic Programming for Approximate Expansion Algorithm
Expansion algorithm is a popular optimization method for labeling problems. For many common energies, each expansion step can be optimally solved with a min-cut/max flow algorithm. While the observed performance of max-flow for the expansion algorithm is fast, its theoretical time complexity is worse than linear in the number of pixels. Recently, Dynamic Programming (DP) was shown to be useful ...
متن کاملDynamic Programming Algorithm for Training Functional Networks
The paper proposes a dynamic programming algorithm for training of functional networks. The algorithm considers each node as a state. The problem is formulated as finding the sequence of states which minimizes the sum of the squared errors approximation. Each node is optimized with regard to its corresponding neural functions and its estimated neuron functions. The dynamic programming algorithm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioinformatics
سال: 2006
ISSN: 1367-4803,1460-2059
DOI: 10.1093/bioinformatics/btl114